April 1, 2003

I had a long discussion today with Dr. Pankratz about how to eliminate the issue that I was having with lights not being updated when they got close enough to each other to block each other. We found that by moving some of the code which would update the trains, that the lights could be updated without much trouble. AllocateResources was not being called when the trains had become blocked. We needed some of the code to be updated, so we did this in the function that called AllocateResources. However, now I am facing a different dilemma. When the trains block each other at opposite photocells, they are looking at the next photocell which is and should be green. I need to have a way of keeping these lights red. I am not coming up with a very elegant solution to this problem.

Another problem which I was attempting to fix in Jeremy’s code was the ability to back out of deadlock. For whatever reason the reverse function needs to be clicked twice in order to make it actually reverse out of deadlock. I have not been able to thoroughly examine this issue. I tried to remove the train from the blocked list, do the updates in variables for reverse, and then fake an arrival. There are also issues about when reverse is hit. If it is hit when the train is on top of a photocell, we are going to have different adjustments in the next and previous photocell than if we were in the middle of the photocells.

I have been playing with what happens when a train gets blocked because of the turnouts. Instead of simply stopping the train, I add it to the blocked list. When toggle turnout is clicked, I remove the train from the blocked list. This is rather simple code at the moment because there are many other checks that need to be done in this function.

